The following skills are recommended, self-guided, SUMMER WORK resources for all students scheduled to take Bridges. Please plan to spend some quality time this summer practicing these skills. We recommend you pace yourself and do not leave it all until the last week.

Below is the list of recommended Khan Academy tutorials, the second page are the skills students should be proficient in by the first day of school. There will be an assessment of this material the first week of school.
https://www.khanacademy.org; click COURSES (upper left corner); click MATH; scroll down, click, and complete skills on the following:

Student should complete the following categories/skills under $\mathbf{7}^{\text {th }}$ Grade math:

1. Negative Numbers: addition and subtraction (all skills)
2. Negative Numbers: multiplication and division (all skills) - KNOW YOUR MULTIPLICATION FACTS!
3. Fractions, decimals, and percentages - only complete the skill Adding and Subtracting Rational Numbers
4. Expressions, equations, and inequalities (all skills)

Once your student has completed $7^{\text {th }}$ Grade, return to the MATH menu, scroll down, click $8^{\text {th }}$ Grade, and complete the following:

1. Numbers and Operations
a. square roots \& cube roots
b. irrational numbers
c. exponents with negative bases
d. exponent properties intro
e. negative exponents
f. exponent properties
2. Solving Equations with One Unknown (all skills)
3. Linear Equations and Functions
a. Graphing Proportional Relationships
b. Solutions to Linear Equations
c. Intercepts
d. Slope
e. Intro to Slope-intercept form
f. Graphing Slope-intercept form
g. Writing slope-intercept equations
h. Functions
i. Recognizing functions

Once your student has completed these, return to the MATH menu, scroll down, click Algebra I, and student should complete the following:

1. Forms of Linear Equations (all skills)
2. Systems of Equations - all skills except word problems
3. Inequalities (systems and graphs) - checking solutions of two-variable inequalities and graphing twovariable inequalities.
4. Functions - evaluating functions, inputs \& outputs of a function, functions \& equations, and recognizing functions.
5. Exponents and Radicals (all skills)
6. Quadratics: Multiplying and Factoring (all skills)
7. Quadratic Functions and Equations - solving by taking the square root and solving quadratics by factoring.

Student SUPPLIES NEEDED FOR Bridges 2024-25: Text: NONE, a TI-30 XIIS Scientific Calculator (students should already have from Geometry), Graph Paper (if desired), Loose-leaf paper, pencils, l-2" Binder.

Teacher Wish List: loose-leaf paper, wide-tip black dry erase markers, and Lysol spray and/or wipes.
"An investment in knowledge always pays the Gest interest." -Benjamin franklin
\qquad
Date: \qquad

Evaluate each expression.

1. $\frac{38-12}{2 \bullet 13} \quad 2 . \quad \frac{2 \cdot 8^{2}-2^{2} \bullet 8}{2 \bullet 8}$ \qquad 3. $3 / 4(8)+1 / 2(12)$ \qquad
2. $[8 \bullet 2-(3+9)]+[8-2 \bullet 3]$ \qquad 5. $10+16 \div 4+8$
3. $-4+13+(-6)$
4. $15+(-12)+(-4)$ \qquad 8. $-11-(-6)-7$ \qquad
5. $16 \div\left(-\frac{4}{5}\right)$ \qquad 10. $\frac{3}{2}+\frac{1}{3}-\frac{3}{4}$
6. $\frac{-12(2+(-3))}{-4+1}$

Simplify each expression.
12. $4(a-6)$ \qquad 13. $6-4 t-4$
14. $2 x(7-x)+3 x^{2}$
15. $6(x+3)-2(4-x)$
16. $\frac{-24 x}{-\frac{2}{3}}$

17

$$
4 \cdot 3 a+2(a+6 b)
$$

Solve each equation.
18. $x-55=-17$
20. $7+3 x=-11$
$x=$ \qquad
22. $2(x-3)+5=3(x-1) \quad x=$ \qquad
23. Graph the line and find its slope:
$(-1,3) \&(2,-6)$
$m=$ \qquad

Graph using a T-chart with 3 ordered pairs.
24. $y=2 x-2$

x	y

25. $-3 y=-6+9 x$

x	y

26. Simplify: $2(-2 x)^{3}$
27. Simplify: $\quad \frac{-12 m^{4} n^{8}\left(m^{3} n^{2}\right)}{36 m^{5} n^{12}}$
28. Simplify: $\frac{-y^{5} z^{7}}{y^{8} z^{5}}$ \qquad
29. What is the slope of the line parallel to $2 x-3 y=15$?
30. What is the slope of the line perpendicular to the line above?
31.
32.

\qquad
\qquad

